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method (Steady version of the Simplified method based on a Beerkan 
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estimated from the different scenarios were compared with those values 
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extracted soil cores, in order to discriminate between theoretically 

possible (Kfs > Kh) and impossible (Kfs ≤ Kh) situations. Physically 

possible Kfs values were always obtained with the exception of the 

crusted soil, where Kfs < Kh situations suggested that the crust layer 

reduced water flow during ponding experiments in the field. The new 

comprehensive model tested in this study represents a valuable tool for 

analyzing both transient and steady-state infiltration data, as well as 

experiments carried out with different depths of ponded water, ring sizes 

and ring insertion depths. 
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Abstract 11 

The objective of this paper was to evaluate a recently proposed comprehensive model for three-12 

dimensional single-ring infiltration and its suitability for estimating soil hydraulic properties. 13 

Infiltration data from four different soils with contrasting characteristics were inverted to estimate 14 

field-saturated soil hydraulic conductivity, Kfs, values using a total of fourteen different scenarios. 15 

Those scenarios differed by: i) the way they constrained the macroscopic capillary length, λ, and the 16 

initial and saturated soil water contents, θi and θs, ii) the use of transient or steady-state data, and iii) 17 

the fitting methods applied to transient data. For comparative purposes, the SSBI method (Steady 18 

version of the Simplified method based on a Beerkan Infiltration run) was also applied. For 19 

validation purposes Kfs data estimated from the different scenarios were compared with those values 20 

obtained by numerical inverse modeling with HYDRUS-2D/3D. This comparison identified 21 

Approaches 1 and 3, which respectively estimate Kfs via optimization and using analytical 22 

expressions, as the most accurate methods. The steady-state scenario of Approach 4 and the SSBI 23 

method, both of which use a λ value of first approximation, appeared preferable for field campaigns 24 

aimed to sample remote or large areas, given that they do not need additional data and still provide 25 

acceptable estimates. The reliability of Kfs data was also checked through a comparison with 26 

unsaturated hydraulic conductivity, Kh, values measured in laboratory on extracted soil cores, in 27 

order to discriminate between theoretically possible (Kfs > Kh) and impossible (Kfs ≤ Kh) situations. 28 

Physically possible Kfs values were always obtained with the exception of the crusted soil, where Kfs 29 

< Kh situations suggested that the crust layer reduced water flow during ponding experiments in the 30 
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field. The new comprehensive model tested in this study represents a valuable tool for analyzing 31 

both transient and steady-state infiltration data, as well as experiments carried out with different 32 

depths of ponded water, ring sizes and ring insertion depths. 33 

Keywords: infiltration model, single-ring infiltrometer, Beerkan, hydraulic conductivity. 34 

1. Introduction 35 

Knowledge of soil properties is essential for modeling hydrological processes. Among other 36 

properties, the field-saturated soil hydraulic conductivity, Kfs, has an important role in the 37 

partitioning of rainfall into runoff and infiltration (Dusek et al., 2012). Different devices and 38 

techniques have been developed over time to measure Kfs in the field, such as the Guelph 39 

permeameter, the double- and the single-ring infiltrometers, among others (Angulo-Jaramillo et al., 40 

2016). The Guelph permeameter is a device that establishes three-dimensional, constant-head 41 

infiltration within a small well excavated into the soil (Reynolds and Elrick, 1985). The double-ring 42 

infiltrometer uses two concentric rings, namely an inner ring and a buffering ring, to create a one-43 

dimensional (1D) infiltration process under the inner ring (Reynolds et al., 2002). However, some 44 

limitations may be encountered in the field when applying these methods. When using the Guelph 45 

permeameter, the excavation of the well may cause soil compaction, artificially decreasing the 46 

infiltration rates (Bagarello et al., 1999). The water flow under the inner ring of the double-ring 47 

infiltrometer rarely approaches a one-dimensional infiltration process in practice (Reynolds et al., 48 

2002). Moreover, this latter method also requires a large amount of water to maintain ponding 49 

conditions inside the buffering ring, thus limiting its application in remote areas. 50 

The single-ring infiltrometer technique (Reynolds and Elrick, 1990) is a widespread method 51 

(e.g., Braud et al., 2017), which has the advantage of speed and simplicity over more cumbersome 52 

procedures, such as the Guelph permeameter and the double-ring infiltrometer. With a single-ring 53 

infiltrometer, a constant or falling-head infiltration process has to be established. Different methods 54 
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for calculating Kfs from single-ring data have been developed over time. Among them, the one-55 

ponding depth method by Reynolds and Elrick (1990) and the similar method by Wu et al. (1999) 56 

both estimate Kfs from steady-state single-ring infiltrometer data. Other approaches make use of 57 

transient infiltration data (e.g., Wu et al., 1999; Wu and Pan, 1997) to determine Kfs. These 58 

alternative approaches may alleviate the experimental efforts needed to determine Kfs data in the 59 

field (Di Prima et al., 2018b). For instance, limiting the analysis to the transient phase may prove 60 

advantageous when characterizing low permeability soils, by reducing the required measurement 61 

time (Bagarello et al., 2014c). 62 

A variation of the single-ring infiltrometer technique is the Beerkan experiment, which consists 63 

of infiltrating water through a ring inserted shallowly (e.g., 1 cm) into the soil with a quasi-zero 64 

head of water imposed on the soil surface (Braud et al., 2005). Many different methods have been 65 

used to interpret Beerkan data. As an example, the Beerkan Estimation of Soil Transfer parameters 66 

(BEST) methods (Bagarello et al., 2014b; Lassabatere et al., 2006; Yilmaz et al., 2010) enable the 67 

user to derive the whole set of soil hydraulic parameters related to water retention and unsaturated 68 

hydraulic conductivity curves. Bagarello et al (2014c) and Bagarello et al. (2017) proposed the 69 

TSBI and SSBI methods (i.e., the Transient and Steady Simplified methods based on a Beerkan 70 

Infiltration run), which allow to estimate Kfs by only using  a Beerkan experiment. 71 

In terms of drawbacks, BEST methods require collection of supplementary data, e.g., bulk 72 

density, particle size distribution. The models also typically fit only transient or steady-state data, 73 

but not both. Such peculiarities make it difficult or impossible to apply these methods to 74 

heterogeneous datasets, such as the recently developed Soil Water Infiltration Global (SWIG) 75 

database (Rahmati et al., 2018). Recently, Stewart and Abou Najm (2018a) developed a new 76 

comprehensive model for single ring infiltration data by combining the infiltration models by 77 

Reynolds and Elrick (1990) and Wu et al. (1999). These authors proposed four different approaches 78 

for estimating Kfs values from both transient and steady-state single-ring infiltration data. The four 79 

approaches differ in the way they constrain the macroscopic capillary length, λ, and the initial and 80 
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saturated soil water contents, θi and θs; each approach requires different types of input parameters 81 

and exhibits different types and amounts of error. The proposed model has a practical interest in 82 

that it treats both transient and steady-state infiltration data, and can analyze experiments carried out 83 

with different ring sizes and ring insertion depths. However, the model was previously validated 84 

using only laboratory and numerical experiments, meaning that it has not yet been experimentally 85 

validated with field measurements. 86 

The objective of this research was to test this new comprehensive model (Stewart and Abou Najm, 87 

2018a) using data acquired for four soils with a range of physical and hydraulic properties. The 88 

model estimated Kfs using the four different approaches for constraining λ, θi and θs, along with 89 

several methods for determining infiltration constants, for a total of thirteen scenarios. The SSBI 90 

method developed by Bagarello et al. (2017) was also applied, giving a fourteenth scenario. The 91 

reliability of Kfs estimates were verified first through a comparison with laboratory measurements of 92 

unsaturated hydraulic conductivity, and then via comparison with values obtained by numerical 93 

inverse modeling with HYDRUS-2D/3D. 94 

2. Theory 95 

2.1. Analysis of single-ring infiltrometer data 96 

The model proposed by Stewart and Abou Najm (2018a) describes three dimensional (3D) 97 

cumulative infiltration, I (L), from a surface circular source under a positive pressure head using the 98 

following explicit relationships for transient and steady-state conditions: 99 
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where t (T) is the time, τcrit (T) is the maximum time for which the transient relationship can be 102 

considered valid, θs (L
3
L

-3
) and θi (L

3
L

-3
) are respectively the saturated and initial volumetric soil 103 
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water content, hsource (L) is the established ponding depth of water, λ (L) is the macroscopic 104 

capillary length of the soil, Kfs (L T
-1

) is the field-saturated soil hydraulic conductivity, a and b are 105 

dimensionless constants respectively equal to 0.45 and 0.55, and f is a correction factor that depends 106 

on soil initial and boundary conditions and ring geometry (Reynolds and Elrick, 1990): 107 

 1
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in which the G* (L) term is equal to: 109 
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where d (L) is the ring insertion depth into the soil and rd (L) is the radius of the disk source. 111 

Because τcrit is not known a priori, the criterion suggested by Bagarello et al. (1999) can be 112 

considered to discriminate between transient and steady-state conditions for cumulative infiltration 113 

data. Assuming the steady-state conditions are reached before the end of an infiltration run, a linear 114 

regression analysis is conducted for the last three data points of I(t) versus t. The time to steady-115 

state, ts (L), is determined as the first value for which: 116 
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where Ireg(t) is estimated from regression analysis, and E defines a given threshold to check 118 

linearity. Equation (4) is applied from the start of the experiment until finding the first data point 119 

that fits the condition Ê  < E (Angulo-Jaramillo et al., 2016). An illustrative example of ts 120 

estimation using the commonly used value of E = 2 is shown in Figure 1a. Transient infiltration 121 

conditions therefore occur from time 0 until time ts (i.e., when Ê  > 2; Figure 1a), while steady-122 

state conditions exist for all data points measured after time ts (i.e., when Ê  < 2). 123 

Equations (1) can be simplified as follows (Philip, 1957): 124 

 tctcI 21            (5a) 125 

 tccI 43            (5b) 126 
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where the intercept, c3 (L), and the slope, c4 (L T
-1

), are estimated by linear regression analysis of 127 

the I(t) vs. t plot, while the infiltration coefficients c1 (L T
-0.5

) and c2 (L T
-1

) can be determined 128 

according to the fitting methods referred to as cumulative infiltration (CI, e.g. Zhang, 1997), 129 

cumulative linearization (CL, Smiles and Knight, 1976) and differential linearization (DL, 130 

Vandervaere et al., 1997). In this investigation we considered all three fitting methods, since each 131 

method has its own advantages and peculiarities (Vandervaere et al., 2000a). An example of the 132 

fitting procedures is depicted in Figures 1b, c, d. 133 

2.2. Estimation of field-saturated soil hydraulic conductivity values 134 

Stewart and Abou Najm (2018b) proposed four different approaches, named Approaches 1, 2, 3 135 

and 4, for estimating Kfs values from single-ring infiltration data. The differences between the four 136 

approaches involve the way in which λ, θi and θs are constrained, which must occur before 137 

estimating Kfs. In the following sections, the four approaches are briefly explained. 138 

2.2.1. Approach 1 139 

The first approach estimates Kfs by constraining all of the other considered parameters, i.e., λ, θi 140 

and θs, and then fitting Eq. (1) to cumulative infiltration. Stewart and Abou Najm (2018b) proposed 141 

to estimate λ from water retention data. Specifically, according to these authors, if the soil is 142 

relatively dry at the beginning of the infiltration experiment, λ tends towards a maximum value, λmax 143 

(L), defined as: 144 

 





1

b
max

h
          (6) 145 

where η and hb (L) are respectively the pore size index and the head scale parameter of the Brooks 146 

and Corey (1964) relations for water retention and hydraulic conductivity. Note that Eq. (6) can be 147 

considered valid for values of the initial matric head of the soil, hi (L), ranging between –∞ and 2hb 148 

(Stewart and Abou Najm, 2018a). Initial and saturated volumetric soil water contents (θi and θs) 149 
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may be measured from soil samples collected before and after the infiltration run or otherwise 150 

estimated.  151 

2.2.2. Approach 2 152 

Approach 2 only requires estimates for θi and θs. For transient-state data, once the c1 and c2 153 

coefficients are determined, the field-saturated soil hydraulic conductivity and the macroscopic 154 

capillary length are calculated by the following equations: 155 
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While for steady-state data, Kfs and λ are calculated as: 158 
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2.2.3. Approach 3 161 

This approach allows the estimation of the field-saturated soil hydraulic conductivity using only 162 

λ, estimated by Eq. (6), and c2 or c4, as determined from the infiltration run. For transient-state data, 163 

once λ and c2 are established then the field-saturated soil hydraulic conductivity is calculated by the 164 

following equation: 165 
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While for steady-state data, Kfs is calculated as: 167 
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2.2.4. Approach 4 169 

Approach 4 uses Eqs. (11) and (12) in conjunction with a λ value of first approximation. 170 

Following Stewart and Abou Najm (2018b), a value of λ = 150 mm was selected for this 171 

investigation. This approach does not require additional information to estimate Kfs from infiltration 172 

runs. Therefore, it is particularly useful when a large number of locations needs to be sampled, 173 

particularly when time and financial resources are limited. 174 

2.2.5. SSBI method 175 

For comparative purposes, the SSBI method (Steady-state version of the Simplified method 176 

based on a Beerkan Infiltration run) proposed by Bagarello et al. (2017) was also applied to 177 

estimate Kfs. SSBI estimates Kfs through a Beerkan infiltration test, i.e., a simple 3D infiltration run 178 

with a quasi-zero water pressure head at the soil surface (Braud et al., 2005; Lassabatere et al., 179 

2006), by the following equation: 180 

 

1
3641

4






d

fs

r

.

c
K          (13) 181 

Note that Eq. (13) is analogous to Eq. (16) in Bagarello et al. (2017), with the latter considering 182 

the sorptive number, α* (L
-1

), which is equal to λ
-1

 (Angulo-Jaramillo et al., 2016). Because Eqs. 183 

(12) and (13) are analogous to one another (i.e., both require estimates for c4 and λ to determine 184 

Kfs), the SSBI method was also applied assuming λ = 150 mm. 185 
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3. Material and methods 186 

3.1. Soil Sampling 187 

Four soils with contrasting physical and hydraulic properties were evaluated in this study 188 

(Castellini et al., 2018). According to the USDA classification, a sandy soil was sampled at Arborea 189 

in Sardinia and a silty-loam soil was sampled at the experimental farm of CREA-AA in Foggia, 190 

Apulia. Two sandy-loam soils were sampled in Sicily at the Department of Agriculture, Food and 191 

Forest Sciences of the Palermo University (sandy-loam 1) and Villabate (sandy-loam 2). For each 192 

site, a total 10 undisturbed soil cores (50 mm in height and 50 mm in diameter) were collected at 193 

randomly sampled points and used to determine both the soil bulk density, ρb (g cm
-3

), and the 194 

initial volumetric soil water content, θi (cm
3
cm

-3
). The soil porosity was calculated from the ρb data, 195 

assuming a soil particle density of 2.65 g cm
-3

. The field saturated soil water content, θs (cm
3
 cm

-3
), 196 

was considered equal to the porosity, in line with other studies (e.g., Di Prima et al., 2018d; 197 

Mubarak et al., 2009). 198 

Disturbed soil samples were also collected to determine the particle size distribution. The 199 

samples were air-dried and sieved through a 2-mm mesh. H2O2 pretreatment was used to eliminate 200 

organic matter and clay deflocculation was encouraged using sodium metaphosphate and 201 

mechanical agitation (Gee and Bauder, 1986). Fine size fractions were determined by the 202 

hydrometer method, whereas the coarse fractions were obtained by mechanical dry sieving. The soil 203 

organic carbon content, SOC (%), was determined by the Walkley–Black method (Walkley and 204 

Black, 1934). Then, the soil organic matter content, SOM (%), was estimated using the van 205 

Bemmelen conversion factor of 1.724 (Van Bemmelen, 1890). The measured soil physical 206 

properties are summarized in Table 1. Furthermore, five to nine undisturbed soil cores (85 mm in 207 

diameter by 75 mm in height) were also collected at each sampling site to conduct measurements of 208 

unsaturated hydraulic conductivity and evaporation tests in the laboratory. 209 
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3.2. Laboratory measurements of unsaturated hydraulic conductivity 210 

Laboratory measurements of unsaturated hydraulic conductivity, Kh, were collected to verify the 211 

reliability of Kfs estimates. We chose to use unsaturated as opposed to saturated conditions as a way 212 

to minimize uncertainty due to measurement artifacts such as entrapped air, open-ended pores, and 213 

edge flow. All these phenomena can result in considerable variations between field-measured and 214 

laboratory-derived estimates of hydraulic conductivity (Di Prima et al., 2018c; Sakaguchi et al., 215 

2005; Stewart and Abou Najm, 2018b). Obviously, the above-mentioned uncertainties are expected 216 

to be less noticeable or even negligible for unsaturated measurements. In particular, the comparison 217 

between Kfs and Kh data allowed us to discriminate between possible (Kfs > Kh) and physically 218 

impossible (Kfs < Kh) situations. The unit hydraulic gradient method (Klute and Dirksen, 1986) was 219 

used to determine the unsaturated soil hydraulic conductivity, Kh (mm h
-1

), on the 85 mm by 75 mm 220 

soil cores. According to the procedure described by Bagarello et al. (2007) and Castellini et al. 221 

(2015), the upper layer of the soil (≤ 2 mm) was carefully removed to allow the placement of a 222 

nylon guard cloth with an air entry value of -160 mm and a thin contact material layer (Spheriglass, 223 

glass spheres, no. 2227). The nylon guard cloth was also placed at the bottom face of the sample to 224 

avoid soil displacement. Each sample was positioned on a sintered porous plate having an air entry 225 

value of -400 mm and then connected to an outflow tube that could be moved in height to establish 226 

a given pressure head value at the bottom of the core. The sample was previously equilibrated for a 227 

48 h time interval on the porous plate by repeatedly raising the outflow level at the first pressure 228 

head value (-120 or -75 mm, depending on the sample). A negative pressure head at the top of the 229 

sample, h0, was imposed by the tension infiltrometer device, which consisted of a porous disk (85 230 

mm in diameter) connected to the water supply reservoir. Measurements were performed by 231 

applying the same pressure head value at the two ends of the soil core. Infiltration evolved from an 232 

initial transient stage to a steady-state stage in which a unit hydraulic gradient was obtained (i.e., 233 

infiltration rates were constant and pressure head readings were equal throughout the soil core). For 234 
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this stage, the steady-state flux was equivalent to the unsaturated hydraulic conductivity 235 

corresponding to the imposed pressure head value (Bagarello et al., 2007). For the sandy, sandy-236 

loam 1 and sandy-loam 2 samples, the pressure head sequences applied was h0 = -120, -60, -30, and 237 

-10 mm, whereas for the silty-loam samples, the sequence was h0 = -75, -30, and -10 mm. 238 

3.3. Laboratory evaporation experiments 239 

Soil water retention measurements were carried out on the same undisturbed soil cores used to 240 

run the unit hydraulic gradient experiments. These experiments allowed us to optimize the 241 

parameters of the Brooks and Corey (1964) relationship. In this way, an independent estimate of the 242 

macroscopic capillary length (required for Approaches 1 and 3) was determined by inputting the 243 

shape, η, and scale, hb (L), parameters into Eq. (6). In this investigation, we used the evaporation 244 

method proposed by Wind (1969) for the computation of the water retention curve, θ(h), through 245 

the simultaneous measurement of volumetric soil water contents and pressure heads at multiple 246 

depths during an evaporation process. More details on the laboratory procedure can be found in 247 

Castellini et al (2018). The fitting of the water retention data was performed using the program 248 

SWRC Fit developed by Seki (2007). This program uses an iterative nonlinear regression procedure 249 

that finds the values of the optimized parameters by minimizing the sum of the squared residuals 250 

between the model and the observed data. Parameter values are reported in Table 2. 251 

3.4. Ponding infiltrometer runs 252 

For each site, a total of ten ponded infiltration runs of the Beerkan type (Braud et al., 2005; 253 

Lassabatere et al., 2006) were carried out at different sampling points. According to the existing 254 

literature, the chosen sample size (N = 10) was expected to yield representative mean Kfs values at 255 

the field scale (Reynolds et al., 2000; Verbist et al., 2010). A ring with an inner diameter of 150 mm 256 

was used in the Apulian (Foggia, silty-loam) and Sardinian (Arborea, sandy) sites, and a ring with 257 

an inner diameter of 85 mm was used in both of the Sicilian sites (sandy-loam 1 and 2). At the 258 
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Arborea site, a larger ring diameter was chosen due to the presence of a weak but clearly detectable 259 

surface structural crust (thickness of ~2 mm), due to the possibility that fractures along the ring 260 

edge may connect the ponded surface water with the underlying, non-crusted, soil layer 261 

(Vandervaere et al., 1997). Beyond the large ring diameter, the small insertion depth (10 mm) used 262 

in this study should also help mitigate the formation of fractures through the crusted layer during 263 

ring insertion (Alagna et al., 2019; Souza et al., 2014). 264 

As prescribed by the Beerkan experimental procedure, the ring was inserted to a depth of 10 mm 265 

in all sites. For each run, 15 water volumes, each equal to 64 mL for the 85 mm diameters rings and 266 

200 mL for the 150 mm diameter rings, were successively poured on the confined soil surface. The 267 

number of infiltrated volumes was sufficient to reach steady-state, as required by the Beerkan 268 

method (Lassabatere et al., 2006). The energy of the falling water was dissipated with fingers to 269 

minimize the soil disturbance owing to water pouring, as commonly suggested (e.g., Alagna et al., 270 

2016; Bagarello et al., 2014a). For each water volume, the time needed for the water to infiltrate 271 

was recorded, and the cumulative infiltration, I (mm) was plotted against time, t (h). 272 

3.5. Numerical Simulation 273 

We chose to use the Kfs-HYDRUS values obtained by the inverse procedure in HYDRUS-2D/3D 274 

(Šimůnek et al., 2008) as a benchmark, as an independent Kfs datum that can be used for assessing 275 

simplified procedures or validating new developed methods does not currently exist (Bagarello et 276 

al., 2017). As discussed above, laboratory measurements induce experimental artifacts that may 277 

limit their comparability with in-situ measurements (Di Prima et al., 2018c). Discrepancies are also 278 

expected when different measurement techniques are applied in the field or even when the same 279 

dataset is analyzed by alternative calculation approaches (Mertens et al., 2002), though in the latter 280 

case the results can still be compared to one another (Wu et al., 1999). The inverse procedure using 281 

in HYDRUS-2D/3D combines the Levenberg-Marquardt non-linear parameter optimization method 282 

(Marquardt, 1963) with a numerical solution of the axisymmetric form of Richards equation 283 
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(Angulo-Jaramillo et al., 2000; Šimůnek and Hopmans, 2002). Similarly to the model configuration 284 

used by Stewart and Abou Najm (2018b), the soil columns were modeled as a 2D axisymmetric 285 

plane with a depth of 500 mm and a radius of 250 mm. A pressure head boundary condition of 5.7 286 

mm was imposed on the soil surface delimited by the ring, while free drainage was set at the bottom 287 

of the modeled domain. The values of θr, θs, η, and hb obtained with the evaporation method were 288 

used as initial values, to improve the fitting results. Note that the Brooks and Corey models were 289 

considered for the water retention and hydraulic conductivity functions, in accordance with the four 290 

analytical approaches. The water content parameters θr and θs were kept fixed and the tortuosity 291 

parameter, l, was set to 0.5. Through a least-squares inverse solution routine, η, hb and Kfs-HYDRUS 292 

values were optimized using the measured cumulative infiltration data. Table 3 summarizes the 293 

optimized parameters, and an example for each soil of the inverse modeling is depicted in Figure 2. 294 

For the four sampled soils, Kfs-HYDRUS ranged from 28.2 to 839.9 mm h
-1

. The wide range of Kfs-295 

HYDRUS values supported the choice to test the proposed model, and the 14 different scenarios, on 296 

these four hydraulically distinct soils. 297 

3.6. Data analysis 298 

In this investigation, we considered a total of 14 different scenarios to estimate Kfs data. More 299 

specifically, the Kfs values were estimated by: 300 

 Approach 1 (scenario i): determining λ through Eq. (6) and θi and θs from sampled soil 301 

cores, and then fitting Eq. (1) to cumulative infiltration; 302 

 Approach 2 (scenarios ii-v): determining λ, θi and θs, and introducing the three datasets 303 

of c2 and c1 values, obtained with the CI, CL and DL fitting methods, into Eqs. (7) and 304 

(8), and the c4 and c3 values into Eqs. (9) and (10); 305 

 Approach 3 (scenarios vi-ix): estimating λ through Eq. (6) and introducing the three 306 

datasets of c2 estimates into Eq. (11), and the c4 values into Eq. (12); 307 
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 Approach 4 (scenarios x-xiii): using λ = 150 mm and introducing the three datasets of c2 308 

estimates into Eq. (11), and the c4 values into Eq. (12); 309 

 SSBI method (scenario xiv) using λ = 150 mm and introducing the c4 values into Eq. 310 

(13). 311 

With reference to Approaches 1 and 3, λ values obtained from water retention data and estimated 312 

by Eq. (6) were averaged to obtain four site-representative values. A single value of θi and θs was 313 

also obtained for a given site by averaging individual determinations (Approach 1 and 2). 314 

The field-saturated soil hydraulic conductivity, Kfs, estimates were compared with the 315 

corresponding values obtained by inverse solution from HYDRUS-2D/3D (i.e., the Kfs-HYDRUS 316 

values) using the relative error, Er(Kfs), defined as follows: 317 

  
HYDRUSfs

HYDRUSfsfs

fs
K

KK
KEr




100        (14) 318 

Note that positive Er(Kfs) values indicate overestimations, whereas negative values indicate 319 

underestimation. Small deviations, i.e., Er(Kfs) ~ 0, suggest that the estimates are close to actual 320 

values. Er(Kfs) values between -50% and +100% represent a factor of difference fD < 2 between 321 

estimated and actual values. Er(Kfs) values between -66.7% and +200% represent fD < 3. The factor 322 

of difference can be calculated as the ratio between the maximum and minimum of Kfs and the 323 

corresponding Kfs-HYDRUS value [i.e., fD = MAX(Kfs, Kfs-HYDRUS)/MIN(Kfs, Kfs-HYDRUS)]. Following 324 

Elrick and Reynolds (1992), fD values not exceeding a value of two were considered indicative of 325 

similar estimates. Also note that all of the estimation and comparison procedures are synthetized in 326 

Figure 2. 327 

For comparisons between paired observations, the paired differences, i.e., Kfs – Kfs-HYDRUS for 328 

given scenario, were calculated and the hypothesis of normality of these differences was checked by 329 

the Kolmogorov-Smirnov test. For normally distributed data, a paired t-test was used to test the 330 

mean difference between paired observations at P < 0.05. For non-normally distributed data the 331 
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Wilcoxon signed rank test was used to test the median difference between paired observations at P 332 

< 0.05. 333 

The adequacy of model fits was evaluated by checking the relative error, Er, and the root mean 334 

squared differences, RMSD, defined as: 335 
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where n is the total number of data pairs, obs
ix  are the observed data and ix  are the values predicted 338 

by the models. Values of Er < 5% were assumed indicative of a satisfactory fitting ability of the 339 

models (Angulo-Jaramillo et al., 2016; Lassabatere et al., 2006). 340 

4. Results 341 

In the following subsections we present: i) the results of the analysis of single-ring infiltration 342 

data and the performances of the different fitting methods (section 4.1), ii) the result of the 343 

comparison between Kfs data estimated from different scenarios and those values obtained by 344 

numerical inverse modeling with HYDRUS-2D/3D (section 4.2), and iii) a check for data reliability 345 

by comparing Kfs estimates with laboratory measurements of unsaturated hydraulic conductivity, Kh 346 

(section 4.3). 347 

4.1. Analysis of single-ring infiltration data 348 

We firstly used Eq. (4) to determine the time to steady-state, ts, with the condition Ê  > 2 (Figure 349 

1a). This threshold split the experimental data into two subsets that were then fitted to the transient- 350 

(t < ts) and steady-state (t ≥ ts) models. Time to steady-state ranged from 1.5–31.1 min, depending 351 

on the run (Table 4). For the sandy soil, ts was on average 19.1 min, with an infiltrated depth I(ts) of 352 
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123.4 mm. In comparison, the sandy loam soils had mean ts values of 5.2 minutes (sandy-loam 1) 353 

and 2.2 minutes (sandy-loam 2). The sandy soil thus required a factor of 4 to 9 more time to reach 354 

steady-state conditions compared to the sandy-loam soils, likely due to the presence of a crust layer, 355 

which reduced infiltration rates (Alagna et al., 2019, 2013) and affected estimates for infiltration 356 

parameters (Di Prima et al., 2018a). 357 

During data analysis, peculiarities emerged within some of the infiltration datasets, with three 358 

types of abnormal behaviors identified (Figure 4). In some runs, the early infiltration rates were 359 

particularly high in comparison with the rest of the run (Figure 4a), causing a large initial jump in 360 

cumulative infiltration (Figure 4b, white circles). This circumstance is quite common in coarse or 361 

initially dry soils (Di Prima et al., 2016). In this case, the first data point of the I/√t vs. √t plot (CL 362 

method) deviated from the general linear behavior (Figure 4c, white circles). This problem can be 363 

easily solved by excluding the first data point from the cumulative infiltration (Figure 4b), allowing 364 

the detection of a linear relationship (Figure 4c, grey circles), and a proper estimation of the c1 and 365 

c2 coefficients. Such an adjustment was made on 14 infiltration runs, i.e., 35% of the cases. Other 366 

investigations also suggested removing the early stage of the infiltration process when a 367 

perturbation occurs (e.g., Bagarello et al., 2014c; Di Prima et al., 2018b; Vandervaere et al., 2000b). 368 

One infiltration experiment, from the sandy soil, showed a sudden decrease in infiltration rate 369 

(Figure 4d). This condition was not easily detectable from the visual inspection of the cumulative 370 

infiltration curve (Figure 4e), but appeared when the data were linearized (Figure 4f). The lack of 371 

linear data meant that Eq. (5a) was inappropriate and that the fitted parameters were physically 372 

meaningless (Vandervaere et al., 2000a). For this reason the sample was excluded from subsequent 373 

analyses. Possible contributing factors include water infiltrating into a less permeable layer (Alagna 374 

et al., 2016; Lassabatere et al., 2019), air entrapment, vertical soil water content gradients and soil 375 

sealing at the surface from repeated water applications (Bagarello et al., 2014c; Di Prima et al., 376 

2018a). 377 
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Other experiments had infiltration rates that increased with time (Figure 4g), such that the 378 

cumulative infiltration curves exhibited convex shapes (Figure 4h). The fitting procedures applied 379 

to these data produced negative values for the c1 infiltration coefficient (Figure 4i). These cases 380 

occurred at the sandy-loam 1 site (one instance) and sandy-loam 2 site (three instances), and reflect 381 

that the early wetting phase was impeded due to hydrophobic surface films on soil particles and 382 

non-zero contact angles between water and soil particles (Hallett et al., 2001; Jarvis et al., 2008). 383 

Hydrophobia may be attributed to locally high OC content (Goebel et al., 2011) and exudates 384 

produced by the plant root systems or living organisms like arbuscular mycorrhizal fungi (Rillig et 385 

al., 2010). This effect is known to diminish during the wetting process (Alagna et al., 2018). It 386 

should be noted that despite the water repellency, relatively high early infiltration rates were still 387 

measured. This result indicates that the soils likely had subcritical water repellency (e.g., Di Prima 388 

et al., 2017a; Lassabatere et al., 2019; Lichner et al., 2007; Lozano-Baez et al., 2018). 389 

Three different sets of c1 and c2 values were obtained for transient-state data using the CI, CL 390 

and DL methods. Overall, the c1 and c2 coefficients were properly estimated in 93% of the cases (37 391 

of 40 runs) for the CI and CL methods, and 95% (38 of 40) for the DL method. The c1 coefficient 392 

ranged between 0.4 and 514.3 mm h
-0.5

 and the c2 coefficient between 95.8 and 4424.2 mm h
-1

 393 

(Table 5). Differences between methods were more pronounced for c1 compared to c2 values, with 394 

the latter only presenting statistically different estimates between the three procedures for the silty-395 

loam soil (Figure 5). Mean c1 values were ordered as DL > CI > CL. Good fits (i.e., Er < 5%) were 396 

obtained for all cases except the DL method on the sandy-loam 2 site (mean Er = 7.6%). 397 

Finally, the analysis of steady-state data (i.e., the data points for which Ê  < 2; Eq. (4)) did not 398 

show any such peculiarities, thus, the intercept, c3, and the slope, c4, of the regression line fitted to 399 

the data points describing steady-state conditions could be properly estimated in all cases (Table 5). 400 
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4.2. Validation with HYDRUS predicted data 401 

The inverse option in HYDRUS-2D/3D was used to optimize the η, hb and Kfs-HYDRUS parameters 402 

on the measured cumulative infiltration data. The field-saturated soil hydraulic conductivity, Kfs, 403 

estimates obtained from the 14 different scenarios were compared with the corresponding values 404 

obtained from HYDRUS, i.e., the Kfs-HYDRUS values. For Approach 1, site-representative values of λ 405 

(Table 6), θi and θs were considered, and Kfs was optimized fitting Eq. (1) to cumulative 406 

infiltrations. The λ values were obtained by averaging for each soil the individual determination 407 

obtained from Eq. (6) and considering the η and hb parameters optimized on the retention data 408 

obtained by the evaporation experiments. The Kfs values ranged between 29.2 and 429.1 mm h
-1

 409 

(Table 7), with 45 and 55% of the runs yielding respectively lower and higher Kfs estimates than the 410 

HYDRUS-estimated values (Figure 6). The differences between Kfs and Kfs-HYDRUS were non-411 

normally distributed according to the Kolmogorov-Smirnov test. The Wilcoxon signed rank test 412 

showed that Approach 1 yielded Kfs estimates not significantly different from the Kfs-HYDRUS values 413 

(Figures 7 and 8). The relative error, Er(Kfs), ranged from -66.5 to 347.3%, with mean and median 414 

factor of difference, fD, values equal to 1.45 and 1.22. Individual values fD were less than two in 415 

85.0% and less than three in 97.5% of the cases, with only one case out of 40 yielding fD > 3 416 

(Figure 9). Therefore, Kfs estimates were acceptable in almost all cases when Eq. (1) was directly 417 

fitted to experimental data. 418 

For Approach 2, four sets of Kfs and λ values were determined: three sets for transient infiltration 419 

data by Eqs. (12) and (13) (one set for each fitting procedure, i.e., CI, CL and DL), and one set for 420 

steady-state data by Eqs. (14) and (15). The three transient scenarios yielded significant higher Kfs 421 

estimates than the Kfs-HYDRUS values (Figures 7 and 8), with mean fD values equal to 12.23 (CI), 422 

16.05 (CL), and 9.30 (DL), and individual fD values higher than three in 80.0, 92.5 and 72.5% of the 423 

cases (Figure 9). The steady-state scenario gave negative λ values, and consequentially negative 424 

Kfs, in 75% of the cases (i.e., 30 out of 40). Overall, Approach 2 either poorly predicted λ and Kfs 425 
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data or failed to give valid estimates at all. The results obtained here can be viewed as a 426 

confirmation of the conclusion by Stewart and Abou Najm (2018b). 427 

For Approach 3, site-representative values of λ were calculated based on water retention 428 

characteristics (Table 6) and four sets of Kfs values were determined: three sets for transient 429 

infiltration data using Eq. (11), and one set for steady-state data using Eq. (12). For these scenarios, 430 

Kfs ranged between 23.2 and 687.4 mm h
-1

 (Table 7), with the transient scenarios yielding slightly 431 

but significantly higher Kfs estimates than HYDRUS, and with the steady-state scenarios yielding 432 

slightly but significantly lower estimates than HYDRUS (Figures 7 and 8). For the four scenarios, 433 

fD values were less than two in at least 75.0% of the transient scenarios and in 95.0% of the steady-434 

state cases (Figure 9), with mean fD values ranging from 1.51 to 1.86 and median fD values from 435 

1.37 to 1.59. Given that Kfs estimates were acceptable in all cases, we considered a new scenario 436 

(Figures 6, 7, 8 and 9) by averaging, for a given run, the four Kfs estimates. This newly conceived 437 

scenario yielded lower mean and median fD values, respectively equal to 1.46 and 1.24. 438 

For Approach 4, a λ value of 150 mm was used to determine four sets of Kfs values (similar to 439 

Approach 3). For the transient scenarios, using a λ value of 150 mm resulted in higher Kfs values 440 

than were predicted by HYDRUS (Figures 7 and 8). For these three scenarios, fD values were 441 

higher than two in 67.5-82.5% of the cases and higher than three in 30.0-55.0% of the cases (Figure 442 

9). Mean fD values ranged from 2.71 to 3.52 and median fD values varied from 2.59 to 3.27. Better 443 

Kfs predictions were obtained by the steady-state scenario, with Er(Kfs) values ranging from -38.6 to 444 

460.4%. This scenario yielded slightly but significant higher Kfs estimates than the actual values 445 

(Figures 7 and 8), with mean and median fD values equal to 1.57 and 1.49. Individual fD values 446 

were respectively less than two and three in 95.0 and 97.5% of the cases, and with only one case out 447 

of 40 yielding fD > 3 (Figure 9). 448 

With the SSBI method, the Er(Kfs) values ranged from -36.8 to 476.6%, with mean and median 449 

fD values equal to 1.63 and 1.54. Individual values fD were less than two in 90.0% and less than 450 

three in 95.0% of the cases, with only two cases out of 40 yielding fD > 3 (Figure 9). 451 
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4.3. Unsaturated vs. field-saturated soil hydraulic conductivity 452 

A further check for data reliability was carried out by comparing Kfs estimates with laboratory 453 

measurements of unsaturated hydraulic conductivity, Kh. Table 8 summarizes the Kh values 454 

measured by the unit hydraulic gradient laboratory method for the four soils. As expected, Kh 455 

increased dramatically in the proximity of the saturation, i.e., for lower |h0| values (Figure 10). The 456 

mean values of the unsaturated soil hydraulic conductivity obtained at the pressure head h0 = -10 457 

mm (K10) ranged between 21.0 and 154.7 mm h
-1

, with higher K10 values measured on the sandy 458 

soil cores. 459 

Firstly, it should be noted that, for the sandy soil, this comparison needs specific consideration 460 

owing to crusting phenomena at the soil surface. In particular, the soil core collection process 461 

disturbed the crust layer, such that fractures on the soil surface were observed in all soil cores. 462 

Therefore, the upper layer of the soil was carefully removed in the laboratory and the measurements 463 

of unsaturated hydraulic conductivity were conducted on the underlying, non-crusted, soil layer. On 464 

the contrary, in the field, we maintained the crust layer during the ponding experiments, in order to 465 

give an insight on the potential of the applied model when a layered medium is characterized. As 466 

mentioned above, the small insertion depth (i.e., 10 mm) of the ring used to run the Beerkan 467 

experiments avoided the formation of fractures in the crust layer, ensuring that the measured 468 

infiltration rates were indicative of the crust layer. As a consequence, 9 of 14 scenarios for this soil 469 

produced mean values of Kfs lower than K10, proving that the soil crust layer reduced water flow 470 

during ponding experiments in the field. 471 

For the silty-loam, sandy-loam 1 and sandy-loam 2 soils, Kfs determined from the 14 different 472 

scenarios always remained higher than the measured Kh values. Therefore, physically possible Kfs 473 

estimates were obtained in all cases, given that Kfs > K10. For these soils, the 14 scenarios yielded 474 

mean Kfs values that were 1.7–68.6 times higher than the corresponding K10, i.e., up to two orders of 475 

magnitude. Differences of this order of magnitude or even higher between saturated and near-476 



21 

 

saturated hydraulic conductivity have been often observed under field conditions (e.g., Buczko et 477 

al., 2003; Castellini et al., 2015; Di Prima et al., 2017a; Dunn and Phillips, 1991; Watson and 478 

Luxmoore, 1986). 479 

5. Discussion 480 

The analysis of the cumulative infiltration measurements identified some runs with peculiarities 481 

such as very high initial infiltration rates, undetectable linear relationships in the CL and DL 482 

methods, and negative values of the infiltration coefficients. Still, infiltration data could be analyzed 483 

to determine the constants c1 and c2 for 93% of the runs using the cumulative infiltration (CI) and 484 

cumulative linearization (CL) methods, and for 95% of the runs using the differential linearization 485 

(DL) method.  486 

The infiltration constants were next applied to estimate Kfs using the comprehensive single-ring 487 

infiltration model of Stewart and Abou Najm (2018a). Here, we considered four approaches and 488 

thirteen scenarios that differed in how λ was constrained, while also comparing Kfs estimates using 489 

the SBBI method. Approaches 1 and 3 were the most data demanding, requiring that λ was 490 

estimated from water retention data and that soil samples were collected before the infiltration runs 491 

to determine initial and saturated volumetric soil water contents (θi and θs), yet our analysis of the 492 

field data showed that those approaches provided the most accurate Kfs estimates compared to 493 

values obtained through numerical inverse modeling with HYDRUS-2D/3D. Approach 1 was the 494 

most accurate overall, likely because it did not require any transformation of the infiltration data. 495 

This approach is therefore recommended for situations when λ, θi and θs are well constrained. Still, 496 

by averaging together the four Kfs estimates obtained by Approach 3 for a given run (i.e., 497 

considering together the scenarios vi – ix in Figure 3), the measurement uncertainty of that 498 

approach was reduced to a level comparable to Approach 1. These averaged Kfs values avoided 499 

uncertainties that might exist within each of the specific fitting procedures (CI, CL and DL), while 500 

also overcoming any failed analyses (e.g., negative estimates for Kfs). As a result, this newly 501 
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considered scenario increased the accuracy of Kfs estimates, and as a result we recommend users 502 

apply a similar averaging scheme when using Approach 3. 503 

The Kfs estimates were less accurate but still acceptable for the steady-state scenarios of 504 

Approach 4 and the SSBI method. The steady-state data likely provided better accuracy than the 505 

transient data because the steady phase of the infiltration process avoids uncertainties due to 506 

variations in infiltration rates caused by, for instance, soil sealing (Di Prima et al., 2018a) or water 507 

repellency (Lichner et al., 2013). With both of these methods, no additional data are required to 508 

determine Kfs, making these procedures desirable when surveying remote or large areas (Bagarello 509 

et al., 2013). One difference between the two is that the SSBI method is theoretically usable for a 510 

ponded depth of water on the infiltration surface, hsource, equal to zero and a null depth of ring 511 

insertion into the soil, d (Bagarello et al., 2017), whereas both zero and positive values of both 512 

hsource and d can be considered with Approach 4. Here both methods were used to analyze 513 

infiltration runs that had a quasi-zero head of water imposed on the soil surface (Beerkan runs), so 514 

the models performed similarly to one another.  515 

The predictive potential of the model was also checked via comparison with laboratory 516 

measurements of unsaturated hydraulic conductivity (Kh). For the silty-loam, sandy-loam 1 and 517 

sandy-loam 2 soils, Kfs estimates from the 14 different scenarios were always higher than the 518 

unsaturated soil hydraulic conductivity. Therefore, physically plausible Kfs values were obtained in 519 

all cases. For the crusted sandy soil, Kfs < Kh situations suggested that the surface crust layer 520 

reduced water flow during ponding experiments in the field. In the future, measuring Kh values 521 

directly in the field using a tension infiltrometer (Casey and Derby, 2002), or the portable Mini Disk 522 

device (Decagon, 2014), may help to properly characterize unsaturated flow in crusted soils. 523 

Indeed, field measurements are known to minimize soil disturbance in comparison with laboratory 524 

methods performed on collected soil samples (Haverkamp et al., 1999). Moreover, tension 525 

infiltrometers were successfully used in many investigations to characterize layered soils in the field 526 

(e.g., Alagna et al., 2013; Di Prima et al., 2017b; Šimůnek et al., 1998; Vandervaere et al., 1997). 527 
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Altogether, the new comprehensive model and the underlying approaches to analyze single-ring 528 

data may allow researchers to better approach heterogeneous datasets, including transient or steady-529 

state infiltration data and experiments carried out with different setups. The versatility of the new 530 

model makes it a good candidate to successfully analyze the SWIG database developed by Rahmati 531 

et al. (2018), which include 5023 infiltration curves collected across the world. 532 

6. Summary and conclusions 533 

In this study, we tested a new comprehensive model for single-ring data on four soils with 534 

different textures, i.e., sandy, silty-loam and sandy-loam. The field-saturated soil hydraulic 535 

conductivity, Kfs, values were estimated by four different approaches, which differ by the way they 536 

derive Kfs, and constrain λ, θi and θs. For comparative purposes, the SSBI method was also applied 537 

to estimate Kfs. In this investigation, we considered a total of 14 different scenarios to estimate Kfs 538 

data that differed in the considered approach (i.e., Approaches 1-4 or SSBI), in the use of transient 539 

or steady-state data, and in the fitting methods applied to transient data (CI, CL and DL). 540 

The Kfs data estimated from different scenarios were compared for validation purposes with 541 

those values obtained by numerical inverse modeling with HYDRUS-2D/3D. Among the different 542 

scenarios, Approaches 1 and 3 appear as the more promising, yielding better Kfs predictions. 543 

Conversely, the steady-state scenario of Approach 4 and the SSBI method are preferable when a 544 

simplified experimental procedure is required, such as when sampling remote or large areas, given 545 

that these interpretations do not require additional data and still provide acceptable estimates of Kfs. 546 
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Table 1. Coordinates, soil textural classification, % clay (0–2 μm), % silt (2–50 μm), and % sand (50–2000 780 

μm) content (size classes based on USDA classification system) in the 0-10 cm depth range, soil organic 781 

matter content (SOM in %), initial volumetric soil water content (i in cm
3
cm

-3
), and dry soil bulk 782 

density (ρb in g cm
–3

) for the four sampled soils (sample size for each soil, N = 10). Standard deviations 783 

are indicated in parentheses. 784 

Coordinates 
39°46’51”N  41°27’4”N 38°6’25”N 38°4’53”N  

8°33’12”E 15°30’4”E 13°21’6”E 13°25’7”E 

Soil use Corn Durum wheat Citrus orchard Citrus orchard 

Soil 

management 

Tilled four months before 

with spreading of sewage 

(liquid cow manure) 

Tilled six 

months before 
Undisturbed 

Undisturbed Tilled 

about two or three 

months before 

Soil texture Sandy Silty-loam Sandy-loam Sandy-loam 

Clay (%) 4.5 (2.2) 13.0 (1.7) 17.6 (1.9) 14.5 (3.3) 

Silt (%) 5.0 (1.3) 60.7 (1.7) 29.8 (2.8) 22.7 (2.0) 

Sand (%) 90.4 (2.1) 26.3 (2.3) 52.6 (4.7) 62.8 (1.8) 

SOM (%) 1.8 (0.04) 2.7 (0.05) 3.9 (0.7) 2.0 (0.3) 

θi (cm
3
 cm

-3
) 0.150 (0.03) 0.141 (0.02) 0.118 (0.01) 0.139 (0.02) 

ρb (g cm
-3

) 1.198 (9.8) 1.128 (7.5) 1.127 (4.2) 1.315 (8.0) 

 785 

  786 
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Table 2. Mean values of the parameters obtained by fitting the Brooks and Corey model to the water 787 

retention data collected during the evaporation experiments. The coefficients of variation (%) are listed 788 

in parentheses. 789 

Soil Variable 

  θs θr hb η RMSD Er 

Sandy 0.439 (11.4) 0.129 (70.2) 132.9 (26.3) 3.968 (38.7) 0.005 (29.5) 1.67 (26.1) 

Silty-loam 0.491 (13.0) 0.130 (91.0) 248.4 (55.7) 3.045 (29.1) 0.003 (36.0) 0.76 (34.4) 

Sandy-loam 1 0.365 (11.5) 0.025 (113.9) 227.8 (17.7) 2.822 (5.0) 0.003 (22.8) 1.18 (29.5) 

Sandy-loam 2 0.458 (4.0) 0.126 (62.1) 276.4 (8.5) 3.122 (13.4) 0.004 (39.4) 1.19 (44.6) 

θs = saturated volumetric soil water content determined based on the water content of the saturated cores 790 

(cm
3
 cm

−3
); θr = residual volumetric soil water content (cm

3
 cm

−3
); hb = head scale parameter (mm); η = 791 

pores size index (-); RMSD = root mean squared differences (cm
3
 cm

−3
); Er = relative error (%).  792 

  793 



31 

 

Table 3. Mean values of the parameters obtained by inverse solution from HYDRUS-2D/3D. The 794 

coefficients of variation (%) are listed in parentheses. 795 

Soil Variable 

  Kfs-HYDRUS hb η RMSD Er 

Sandy 76.8 (44.7) 92.0 (51.5) 5.344 (30.5) 6.0 (61) 5.9 (61) 

Silty-loam 47.3 (45.9) 157.6 (38.3) 4.421 (29.1) 1.1 (94.6) 1.0 (94.6) 

Sandy-loam 1 130.2 (62.5) 165.3 (92) 6.381 (5.9) 3.8 (46.4) 3.6 (46.4) 

Sandy-loam 2 460.1 (49.4) 104.7 (44.4) 6.181 (16.3) 5.1 (34.8) 5.0 (34.8) 

Kfs-HYDRUS = field-saturated soil hydraulic conductivity (mm h
-1

); hb = head scale parameter (mm); η = pores 796 

size index (-); RMSD = root mean squared differences (mm); Er = relative error (%). 797 

  798 
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Table 4. Minimum (Min), maximum (Max), mean, median and coefficient of variation (CV, in %) of the 799 

equilibration time, ts (min), and infiltrated depth at the equilibration time, I(ts) (mm). N = 10 samples for 800 

each soil. 801 

Variable Soil     Statistic     

    Min Max Mean Median CV 

ts Sandy 12.8 31.1 19.1  17.1 35.0 

 

Silty-loam 11.6 24.8 17.0  16.0 24.9 

 

Sandy-loam 1 2.6 10.1 5.2  3.4 57.1 

  Sandy-loam 2 1.5 3.4 2.2  1.9 29.2 

I(ts) Sandy 113.2 135.8 123.4  124.5 6.8 

 

Silty-loam 101.9 124.5 121.1  124.5 6.3 

 

Sandy-loam 1 56.6 124.5 99.6  107.5 21.3 

  Sandy-loam 2 101.9 135.8 125.6  124.5 9.0 

 802 

  803 
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Table 5. Sample size (N), minimum (Min), maximum (Max), mean, median and coefficient of variation 804 

(CV, in %) of the c1 (mm h
-0.5

) and c2 (mm h
-1

) parameters estimated from transient infiltration data by 805 

the cumulative infiltration (CI), cumulative linearization (CL) and differential linearization (DL) 806 

methods, the relative errors, Er (%), of the fitting of the functional relationships to the experimental data, 807 

and the intercept, c3 (mm), and slope, c4 (mm h
-1

), of the regression line fitted to the last data points 808 

describing the steady-state conditions on the I vs. t plot. 809 

Soil  Type of data Fitting Variable       Statistic     

    method   N Min Max Mean Median CV 

Sandy Transient data CI c1 10 40.9 119.9 73.4 66.6 32.8 

   

c2 10 115.9 463.5 296.7 294.6 33.0 

  

  Er 10 0.3 4.9 1.4 1.2 98.1 

  

CL c1 9 38.8 83.4 63.0 60.3 22.7 

   

c2 9 195.1 472.9 330.5 307.9 23.6 

  

  Er 9 0.5 2.6 1.4 1.4 57.7 

  

DL c1 9 52.7 155.5 95.2 85.8 37.1 

   

c2 9 163.3 417.9 274.0 240.5 32.0 

 

    Er 9 1.4 12.8 4.7 3.9 76.0 

 

Steady data 

 

c3 10 21.5 74.5 41.2 39.8 42.9 

      c4 10 120.3 454.4 288.6 290.4 35.6 

Silty-loam Transient data CI c1 10 84.5 147.4 118.0 118.3 19.1 

   

c2 10 95.8 313.7 216.9 214.4 29.1 

  

  Er 10 0.3 1.8 1.1 1.0 44.5 

  

CL c1 10 41.3 86.5 59.5 55.2 27.1 

   

c2 10 167.8 477.2 315.5 340.1 31.1 

  

  Er 10 0.7 3.1 1.8 1.8 43.0 

  

DL c1 10 85.6 121.1 101.4 98.6 12.4 

   

c2 10 133.6 366.0 243.9 254.0 29.8 

 

    Er 10 1.4 5.7 2.6 2.2 46.9 

 

Steady data 

 

c3 10 29.8 42.5 36.7 37.4 9.5 

      c4 10 219.2 448.6 313.5 328.9 24.9 

Sandy-loam 1 Transient data CI c1 10 35.1 150.6 84.4 80.7 48.7 

   

c2 10 245.6 2518.6 1194.4 1388.8 56.6 

  

  Er 10 0.2 2.6 1.5 1.5 55.4 

  

CL c1 10 6.2 126.9 63.1 64.9 65.5 

   

c2 10 233.5 2674.2 1263.7 1399.3 55.7 

  

  Er 10 0.2 3.7 1.6 1.1 76.6 

  

DL c1 9 5.1 309.7 114.3 106.1 93.4 

   

c2 9 303.9 1742.9 1161.3 1240.4 39.7 

 

    Er 9 0.2 9.4 4.2 4.4 63.0 

 

Steady data 

 

c3 10 7.1 38.1 19.4 19.8 45.4 

      c4 10 289.5 2077.9 1192.4 1331.6 46.1 

Sandy-loam 2 Transient data CI c1 7 53.0 251.2 135.3 135.2 55.6 

   

c2 7 2090.3 4183.2 3192.3 3399.1 24.8 

  

  Er 7 0.8 3.0 1.9 1.9 34.2 

  

CL c1 8 5.8 181.4 97.5 101.5 64.8 

   

c2 8 2165.5 4424.2 3197.0 3236.1 26.8 

  

  Er 8 0.9 3.9 2.4 2.1 48.3 

  

DL c1 10 0.4 514.3 247.7 236.6 65.0 

   

c2 10 1119.4 3727.1 2608.8 2742.0 32.6 

 

    Er 10 2.6 11.6 7.6 7.8 36.7 

 

Steady data 

 

c3 10 5.3 54.1 28.4 28.0 49.1 

      c4 10 1800.6 3804.2 2805.5 3072.0 25.9 
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Table 6. Sample size (N), Minimum (Min), maximum (Max), mean, median and coefficient of variation 811 

(CV, in %) of the macroscopic capillary length, λ (mm), values. 812 

Soil Method Type of data Fitting       Statistic     

      method N Min Max Mean Median CV 

Sandy Approach 1 and 3     186.9 

 
Approach 2 Transient data CI 8 0.2 28.7 10.2 5.1 114.6 

   

CL 6 0.8 14.2 6.8 6.5 81.1 

  

  DL 7 0.9 188.7 47.0 8.6 153.9 

 

  Steady data   λ < 0 

 
Approach 4     150.0 

Silty-loam Approach 1 and 3     373.3 

 
Approach 2 Transient data CI 8 37.3 171.7 86.0 82.8 49.9 

   

CL 4 2.6 47.9 24.2 23.1 91.9 

  

  DL 9 14.4 86.1 41.8 38.6 48.3 

 

  Steady data   λ < 0 

 

Approach 4     150.0 

Sandy-loam 1 Approach 1 and 3     352.7 

 
Approach 2 Transient data CI 4 1.3 26.2 8.6 3.5 137.5 

   
CL 2 0.6 1.0 0.8 0.8 33.3 

  

  DL 3 1.9 47.7 17.7 3.5 147.1 

 

  Steady data   8 21.9 2410.9 741.1 265.2 131.4 

 

Approach 4     150.0 

Sandy-loam 2 Approach 1 and 3     410.1 

 
Approach 2 Transient data CI 2 7.4 53.7 30.6 30.6 107.3 

   

CL 2 1.4 7.9 4.6 4.6 98.7 

  

  DL 4 3.1 663.6 185.0 36.6 173.1 

 
  Steady data   2 19.5 121.9 70.7 70.7 102.5 

 
Approach 4     150.0 

 813 
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Table 7. Sample size (N), Minimum (Min), maximum (Max), mean, median and coefficient of variation 815 

(CV, in %) of the field-saturated soil hydraulic conductivity, Kfs (mm h
-1

), values obtained by the SSBI 816 

method, and the four approaches (1, 2, 3and 4) for different data analysis procedures (transient and 817 

steady data) and fitting methods (cumulative infiltration, CI, cumulative linearization, CL, and 818 

differential linearization, DL). 819 

Soil Method Type of data Fitting       Statistic     

      method N Min Max Mean Median CV 

Sandy Approach 1     10 52.8 127.6 91.0 91.2 24.9 

 
Approach 2 Transient data CI 9 335.1 921.6 559.1 482.9 35.4 

   
CL 9 389.6 953.9 613.9 569.1 28.4 

  

  DL 7 93.8 714.2 443.9 588.0 59.9 

 

  Steady data   0           

 
Approach 3 Transient data CI 10 51.0 203.8 130.4 129.5 33.0 

   

CL 9 85.8 207.9 145.3 135.3 23.6 

  

  DL 9 71.8 183.7 120.5 105.7 32.0 

 

  Steady data   10 23.8 89.9 57.1 57.5 35.6 

 
Approach 4 Transient data CI 10 60.2 240.8 154.1 153.1 33.0 

   

CL 9 101.4 245.7 171.7 160.0 23.6 

  

  DL 9 84.9 217.1 142.4 125.0 32.0 

 

  Steady data   10 28.1 106.2 67.5 67.9 35.6 

  SSBI     10 32.3 121.9 77.4 77.9 35.6 

Silty-loam Approach 1     10 35.0 74.5 51.5 54.3 24.2 

 
Approach 2 Transient data CI 8 130.1 252.2 186.0 188.7 21.5 

   
CL 10 175.2 971.4 600.2 663.6 43.7 

  

  DL 9 180.1 517.6 302.9 275.7 41.0 

 

  Steady data   0           

 

Approach 3 Transient data CI 10 23.7 77.6 53.7 53.1 29.1 

   
CL 10 41.5 118.1 78.1 84.2 31.1 

  

  DL 10 33.1 90.6 60.4 62.9 29.8 

 

  Steady data   10 24.4 50.0 34.9 36.6 24.9 

 

Approach 4 Transient data CI 10 49.8 163.0 112.7 111.4 29.1 

   
CL 10 87.2 248.0 163.9 176.7 31.1 

  

  DL 10 69.4 190.1 126.7 132.0 29.8 

 

  Steady data   10 51.3 104.9 73.3 76.9 24.9 

  SSBI     10 58.8 120.4 84.1 88.3 24.9 

Sandy-loam 1 Approach 1     10 29.2 238.7 134.7 148.9 48.7 

 
Approach 2 Transient data CI 10 495.7 5549.5 2321.5 2586.0 65.3 

   

CL 10 458.4 5938.9 2595.9 2774.2 59.0 

  
  DL 8 673.3 3540.2 2089.7 2222.0 42.1 

 
  Steady data   8 18.1 683.5 229.4 169.8 96.0 

 

Approach 3 Transient data CI 10 43.8 448.9 212.9 247.5 56.6 

   

CL 10 41.6 476.7 225.2 249.4 55.7 

  
  DL 9 54.2 310.7 207.0 221.1 39.7 

 
  Steady data   10 23.2 166.7 95.6 106.8 46.1 

 

Approach 4 Transient data CI 10 91.2 935.8 443.8 516.0 56.6 

   

CL 10 86.8 993.6 469.5 519.9 55.7 

  
  DL 9 112.9 647.6 431.5 460.9 39.7 

 
  Steady data   10 48.4 347.4 199.4 222.6 46.1 

  SSBI     10 50.0 357.5 205.0 229.1 46.1 

Sandy-loam 2 Approach 1     10 175.9 429.1 309.7 300.9 27.4 

 
Approach 2 Transient data CI 7 1601.4 8352.6 5977.3 6538.4 38.9 

   

CL 8 3660.4 9230.1 6477.9 6569.4 29.3 

  

  DL 7 284.3 7561.7 4308.6 4625.4 64.5 

 

  Steady data   2 595.0 2156.7 1375.8 1375.8 80.3 

 
Approach 3 Transient data CI 7 324.8 649.9 496.0 528.1 24.8 

   

CL 8 336.4 687.4 496.7 502.8 26.8 

  

  DL 10 173.9 579.1 405.3 426.0 32.6 

 

  Steady data   10 125.9 266.0 196.1 214.8 25.9 

 
Approach 4 Transient data CI 7 776.7 1554.3 1186.1 1262.9 24.8 

   

CL 8 804.6 1643.8 1187.8 1202.4 26.8 

  

  DL 10 415.9 1384.8 969.3 1018.7 32.6 

 

  Steady data   10 301.0 636.0 469.1 513.6 25.9 

  SSBI     10 309.8 654.5 482.7 528.5 25.9 
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Table 8. Sample size (N), minimum (Min), maximum (Max), mean, median and coefficient of variation (CV, 821 

in %) of the unsaturated soil hydraulic conductivity, Kh (mm h
-1

), values obtained at different pressure 822 

heads, h0 (mm) from the unit hydraulic gradient laboratory method for the four soils. 823 

Soil h0       Statistic     

    N Min Max Mean Median CV 

Sandy -10 3 130.1 176.3 154.7 157.8 15.0 

 

-30 5 85.7 150.9 115.1 106.5 21.6 

 

-60 5 41.2 115.6 88.1 96.3 31.9 

  -120 5 8.6 58.3 39.4 46.9 48.4 

Silty-loam -10 5 11.6 29.2 21.0 24.0 37.1 

 

-30 5 8.4 21.7 14.0 12.4 38.2 

  -75 5 2.9 11.7 7.4 7.7 43.2 

Sandy-loam 1 -10 7 14.3 63.6 35.9 29.8 53.7 

 

-30 7 11.8 50.0 26.9 25.3 48.5 

 

-60 7 9.2 32.9 18.1 15.9 46.1 

  -120 7 3.3 16.4 8.0 8.3 54.7 

Sandy-loam 2 -10 9 38.5 183.2 87.1 65.4 62.9 

 

-30 9 22.5 104.9 50.4 48.0 52.7 

 

-60 9 12.0 64.2 29.9 30.5 55.7 

  -120 9 4.8 21.9 11.5 10.4 45.4 

 824 
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Figure 1. (a) Procedure for estimating the equilibration time, ts (h), and the infiltrated depth at the 826 

equilibration time, I(ts) (mm), from cumulative infiltrations, and the intercept, c3 (mm), and slope, c4 827 

(mm h
-1

), of the regression line fitted to the last data points describing the steady-state conditions on the I 828 

vs. t plot. (b) (c) (d) Estimation of the c1 (mm h
-0.5

) and c2 (mm h
-1

) parameters by the cumulative 829 

infiltration (CI), cumulative linearization (CL) and differential linearization (DL) fitting methods. The 830 

relative error, Er (%) [Eq. (15)], of the fitting of the functional relationships to the experimental data is 831 

also reported. The example shows an infiltration run carried out at the silty-loam site. 832 

Figure 2. Examples of the soil water content profiles at the final time of the experiments (tend) and 833 

infiltration curves modeled using the inverse solution from HYDRUS 2D/3D (dashed lines) compared 834 

with the observed data (symbols) for the four soils. For each example, the water retention parameters hb 835 

(mm) and η (-), along with the field-saturated soil hydraulic conductivity, Kfs-HYDRUS (mm h
-1

), value 836 

obtained by inverse solution from HYDRUS-2D/3D, and the root mean square error, RMSE (mm), and 837 

the relative error, Er (%), between the simulated and the observed curves are also reported. 838 

Figure 3. Flowchart of the fourteen different scenarios and comparison between estimated and HYDRUS-839 

determined values (i.e., Kfs vs. Kfs-HYDRUS). 840 

Figure 4. Illustrative examples showing three different abnormal behaviors of the infiltration curves. 841 

Figure 5. Comparison between the mean c1 (mm h
-0.5

) and c2 (mm h
-1

) parameters estimated by the 842 

cumulative infiltration (CI), cumulative linearization (CL) and differential linearization (DL) methods 843 

for the four soils (sandy, silty-loam, sandy-loam 1 and sandy-loam 2). The relative error, Er (%), of the 844 

fitting of the functional relationships to the experimental data is also reported. For a given variable and 845 

soil, different letters represent significant differences according to the Tukey’s Honestly Significant 846 

Difference test (P < 0.05). 847 
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Figure 6. Cumulative empirical frequency distribution of the relative error of the field-saturated soil 848 

hydraulic conductivity, Er(Kfs) [Eq. (14)], predictions (expressed as a percentage of the HYDRUS-849 

determined values, Kfs-HYDRUS) estimated by: i) Approach 1, ii) averaging individual determinations of the 850 

four scenarios considered in the Approach 3, iii) Approach 4 with steady-state data analysis, and iv) the 851 

SSBI method. 852 

Figure 7. Individual value plot of differences between estimated and HYDRUS-determined values (i.e., Kfs - 853 

Kfs-HYDRUS). Gray and black circles indicate datasets that are respectively normally and non-normally 854 

distributed according to the Kolmogorov-Smirnov test. Solid circles indicate datasets with a mean 855 

(paired t-test) or median (Wilcoxon signed-rank test) difference between pairs not significantly different 856 

from zero. Open circles indicate datasets with a mean or median difference between pairs significantly 857 

different from zero. 858 

Figure 8. Comparison between estimated and HYDRUS-determined values (Kfs vs. Kfs-HYDRUS). 859 

Figure 9. Percentage of infiltration runs yielding a factor of difference, fD, not exceeding 2, between 2 and 3, 860 

and greater than 3, and percentage of failed runs. fD = MAX(Kfs, Kfs-HYDRUS)/MIN(Kfs, Kfs-HYDRUS). 861 

Figure 10. Comparison for the four soils (sandy, silty-loam, sandy-loam 1 and sandy-loam 2) between the 862 

mean unsaturated soil hydraulic conductivity, Kh (mm h
-1

), values obtained at different pressure heads, h0 863 

(mm) from the unit hydraulic gradient laboratory method, and the mean field-saturated soil hydraulic 864 

conductivity, Kfs (mm h
-1

), values obtained by inverse solution from HYDRUS-2D/3D, the SSBI method, 865 

and the four approaches (1, 2, 3 and 4), for different data analysis procedures (transient, Tr., and steady, 866 

St.) and fitting methods (cumulative infiltration, CI, cumulative linearization, CL, and differential 867 

linearization, DL). For each soil, the vertical list of scenarios reflect the descending order of the K 868 

values. 869 

 870 
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Experimental Assessment of a New Comprehensive Model for Single Ring Infiltration Data 1 

Abstract 2 

The objective of this paper was to evaluate a recently proposed comprehensive model for three-3 

dimensional single-ring infiltration and its suitability for estimating soil hydraulic properties. 4 

Infiltration data from four different soils with contrasting characteristics were inverted to estimate 5 

field-saturated soil hydraulic conductivity, Kfs, values using a total of fourteen different scenarios. 6 

Those scenarios differed by: i) the way they constrained the macroscopic capillary length, λ, and the 7 

initial and saturated soil water contents, θi and θs, ii) the use of transient or steady-state data, and iii) 8 

the fitting methods applied to transient data. For comparative purposes, the SSBI method (Steady 9 

version of the Simplified method based on a Beerkan Infiltration run) was also applied. For 10 

validation purposes Kfs data estimated from the different scenarios were compared with those values 11 

obtained by numerical inverse modeling with HYDRUS-2D/3D. This comparison identified 12 

Approaches 1 and 3, which respectively estimate Kfs via optimization and using analytical 13 

expressions, as the most accurate methods. The steady-state scenario of Approach 4 and the SSBI 14 

method, both of which use a λ value of first approximation, appeared preferable for field campaigns 15 

aimed to sample remote or large areas, given that they do not need additional data and still provide 16 

acceptable estimates. The reliability of Kfs data was also checked through a comparison with 17 

unsaturated hydraulic conductivity, Kh, values measured in laboratory on extracted soil cores, in 18 

order to discriminate between theoretically possible (Kfs > Kh) and impossible (Kfs ≤ Kh) situations. 19 

Physically possible Kfs values were always obtained with the exception of the crusted soil, where Kfs 20 

< Kh situations suggested that the crust layer reduced water flow during ponding experiments in the 21 

field. The new comprehensive model tested in this study represents a valuable tool for analyzing 22 

both transient and steady-state infiltration data, as well as experiments carried out with different 23 

depths of ponded water, ring sizes and ring insertion depths. 24 
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 A comprehensive model for three-dimensional single-ring infiltration was evaluated. 

 The model allows to analyze both transient and steady-state infiltration data. 

 The model may allow researchers to better approach heterogeneous datasets. 
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